Monotone Retargeting for Unsupervised Rank Aggregation with Object Features
نویسندگان
چکیده
Learning the true ordering between objects by aggregating a set of expert opinion rank order lists is an important and ubiquitous problem in many applications ranging from social choice theory to natural language processing and search aggregation. We study the problem of unsupervised rank aggregation where no ground truth ordering information in available, neither about the true preference ordering between any set of objects nor about the quality of individual rank lists. Aggregating the often inconsistent and poor quality rank lists in such an unsupervised manner is a highly challenging problem, and standard consensus-based methods are often ill-defined, and difficult to solve. In this manuscript we propose a novel framework to bypass these issues by using object attributes to augment the standard rank aggregation framework. We design algorithms that learn joint models on both rank lists and object features to obtain an aggregated rank ordering that is more accurate and robust, and also helps weed out rank lists of dubious validity. We validate our techniques on synthetic datasets where our algorithm is able to estimate the true rank ordering even when the rank lists are corrupted. Experiments on three real datasets, MQ2008, MQ2008 and OHSUMED, show that using object features can result in significant improvement in performance over existing rank aggregation methods that do not use object information. Furthermore, when at least some of the rank lists are of high quality, our methods are able to effectively exploit their high expertise to output an aggregated rank ordering of great accuracy.
منابع مشابه
LETOR Methods for Unsupervised Rank Aggregation
Learning the true rank ordering among objects by aggregating a set of expert opinion rank order lists is an important and ubiquitous problem in many applications ranging from social choice theory to recommendation systems and search aggregation. We study the problem of unsupervised rank aggregation where no ground truth ordering information in available, neither about the true preference orderi...
متن کاملLearning to Rank With Bregman Divergences and Monotone Retargeting
This paper introduces a novel approach for learning to rank (LETOR) based on the notion of monotone retargeting. It involves minimizing a divergence between all monotonic increasing transformations of the training scores and a parameterized prediction function. The minimization is over the transformations as well as over the parameters. MR is applied to Bregman divergences, a large class of “di...
متن کاملNew learning methods for supervised and unsupervised preference aggregation
In this paper we present a general treatment of the preference aggregation problem, in which multiple preferences over objects must be combined into a single consensus ranking. We consider two instances of this problem: unsupervised aggregation where no information about a target ranking is available, and supervised aggregation where ground truth preferences are provided. For each problem class...
متن کاملMEMR: A Margin Equipped Monotone Retargeting Framework for Ranking
We bring to bear the tools of convexity, margins and the newly proposed technique of monotone retargeting upon the task of learning permutations from examples. This leads to novel and efficient algorithms with guaranteed prediction performance in the online setting and on global optimality and the rate of convergence in the batch setting. Monotone retargeting efficiently optimizes over all poss...
متن کاملInterval-valued intuitionistic fuzzy aggregation methodology for decision making with a prioritization of criteria
Interval-valued intuitionistic fuzzy sets (IVIFSs), a generalization of fuzzy sets, is characterized by an interval-valued membership function, an interval-valued non-membership function.The objective of this paper is to deal with criteria aggregation problems using IVIFSs where there exists a prioritization relationship over the criteria.Based on the ${L}$ukasiewicz triangular norm, we first p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.04465 شماره
صفحات -
تاریخ انتشار 2016